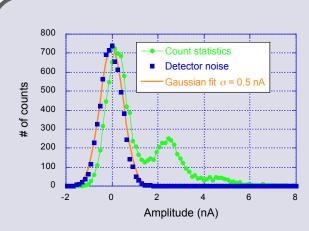

Infrared Spectroscopic Imaging Array based on Single-Photon Calorimetry

PI: Boris Karasik (Jet Propulsion Laboratory, California Institute of Technology)

Co-ls: Daniel Santavicca & Daniel Prober (Yale University)



- Spectroscopy of life-tracing molecules in atmospheres of Earth-like exoplanets
- Spectral resolution $\lambda/\delta\lambda \sim 50$ is needed: photon flux ~ 0.5 photon/sec.

Single-photon Hot-Electron Nanobolometer (nano-HEB) can provide energy resolution ~ 100 in in the mid-IR without using dispersion optical elements

Achievements

- Detection of single 8-µm photons with the energy resolution ~ 2 has been achieved
- Submicron-size nano-HEBs coupled to mid-IR micorantennas have been developed and fabricated

HOW IT WORKS:

- · Radiation couples to the superconducting nano-HEB via a small antenna
- One single mid-IR photon increases the device temperature so much that it becomes almost normal metal
- Because of the small device volume and low temperature the noise is small so ~ 1% differences in the photon energy can be distinguished
- · Large array of single-photon calorimeters would provide a spectral image of the faint IR objects in space

- Comprehensive study of energy resolution, count rate, and quantum efficiency vs temperature, wavelength, and device size
- Characterization of the radiation coupling efficiency in antenna-coupled devices
- Optimization of the nano-HEB material (reduction of T_C, smaller superconducting film thickness. antenna impedance match to the device resistance)
- · Design and characterization of the optical front-end using either a plate of germanium lenslets or silver halide single-mode fibers
- Demonstration of a small single-photon calorimeter array with the SQUID multiplexed readout

External Interest

Future Work

- Yale University will be the academic partner in the future work
- Non-NASA applications could be in single-molecule spectroscopy (NSF) and in quantum information and metrology (NSF, DARPA)

Quantum Calorimeter New Insight:

Will allow for simultaneous acquisition of spectral and spatial information from weak IR sources in space